# News and Updates

We’re pleased to announce our summer workshop schedule for 2020. The schedule for our regular 5-Day workshops is: May 11-15: Network Analysis May 11-15: Structural Equation Modeling May 18-22: Longitudinal Structural Equation Modeling June 1-5: Latent Class/Cluster Analysis and Mixture Modeling June 8-12: Multilevel Modeling now with an R software option in addition to SAS, SPSS, and Stata In…

Read MoreThis is a question that often arises when using structural equation models in practice, sometimes once a study is completed but more often in the planning phase of a future study. To think about power, we must first consider ways in which we can make errors in hypothesis testing (Cohen, 1992). Briefly, the Type I…

Read MoreThis is a great question and is one that prompts much disagreement among quantitative methodologists. Nearly all confirmatory factor analysis or structural equation models impose some kind of restrictions on the number parameters to be estimated. Usually, some parameters are set to zero (and thus not estimated at all), but sometimes restrictions come in the…

Read MoreThis is a question we often hear, particularly from students and junior researchers who don’t have access to sometimes expensive commercial software for fitting structural equation models. It is possible to estimate a wide array of SEMs, ranging from simple path models to fully latent SEMs to growth curve models and beyond, using the lavaan…

Read MoreWe have worked with statistical models for longitudinal data for more than two decades and this remains a vexing question to us both. There are so many modeling options from which to choose that it is often overwhelming to know which statistical method to use when. This is further complicated by the ongoing refinement of…

Read MoreThis very common question reflects a great deal of unnecessary confusion about how to select a specific analytic approach for modeling longitudinal data. The general term “growth modeling” refers to a variety of statistical methods that allow for the estimation of inter-individual (or between-person) differences in intra-individual (or within-person) change. Often, the function describing within-person…

Read MoreGrowth curve models, whether estimated as a multilevel model (MLM) or a structural equation model (SEM), have become widely used in many areas of behavioral, health, and education sciences. The most common type of growth model defines a linear trajectory in which the time scores defining the slopes increment evenly for equally spaced repeated measures…

Read MoreContinuous distributions are typically described by their mean (central tendency), variance (spread), skew (asymmetry), and kurtosis (thickness of tails). A normal distribution assumes a skew and kurtosis of zero, but truly normal distributions are rare in practice. Unfortunately, the fitting of standard SEMs to non-normal data can result in inflated model test statistics (leading models…

Read MoreThis is one of the most common questions we receive and, unfortunately, there are no quick answers. However, there are some initial guidelines that can be followed when assessing the fit of an SEM. For most SEMs, the goal of the analysis is to define a model that results in predicted values of the summary…

Read MoreAt Curran-Bauer Analytics, we have long been committed to providing broad access to high-quality training opportunities for students in the social, behavioral and health sciences. We are thus very excited to announce a new three-day workshop, Introduction to Multilevel Modeling for Graduate Students, to be held in Chapel Hill, NC on May 29-31, 2019, at steeply reduced…

Read More