# News and Updates

This is a great question and is one that prompts much disagreement among quantitative methodologists. Nearly all confirmatory factor analysis or structural equation models impose some kind of restrictions on the number parameters to be estimated. Usually, some parameters are set to zero (and thus not estimated at all), but sometimes restrictions come in the…

Read MoreThis is a question we often hear, particularly from students and junior researchers who don’t have access to sometimes expensive commercial software for fitting structural equation models. It is possible to estimate a wide array of SEMs, ranging from simple path models to fully latent SEMs to growth curve models and beyond, using the lavaan…

Read MoreWe have worked with statistical models for longitudinal data for more than two decades and this remains a vexing question to us both. There are so many modeling options from which to choose that it is often overwhelming to know which statistical method to use when. This is further complicated by the ongoing refinement of…

Read MoreThis very common question reflects a great deal of unnecessary confusion about how to select a specific analytic approach for modeling longitudinal data. The general term “growth modeling” refers to a variety of statistical methods that allow for the estimation of inter-individual (or between-person) differences in intra-individual (or within-person) change. Often, the function describing within-person…

Read MoreGrowth curve models, whether estimated as a multilevel model (MLM) or a structural equation model (SEM), have become widely used in many areas of behavioral, health, and education sciences. The most common type of growth model defines a linear trajectory in which the time scores defining the slopes increment evenly for equally spaced repeated measures…

Read MoreContinuous distributions are typically described by their mean (central tendency), variance (spread), skew (asymmetry), and kurtosis (thickness of tails). A normal distribution assumes a skew and kurtosis of zero, but truly normal distributions are rare in practice. Unfortunately, the fitting of standard SEMs to non-normal data can result in inflated model test statistics (leading models…

Read MoreThis is one of the most common questions we receive and, unfortunately, there are no quick answers. However, there are some initial guidelines that can be followed when assessing the fit of an SEM. For most SEMs, the goal of the analysis is to define a model that results in predicted values of the summary…

Read MoreMany programs can be used to fit multilevel models. For instance, in our multilevel modeling summer workshop, we demonstrate three programs: SAS, SPSS, and Stata. Unlike SAS, Stata, and many other programs, however, SPSS does not currently offer the option to output estimates of the random effects. Obtaining estimates of the random effects can be…

Read MoreOften the most interesting research question is not whether a relationship between two variables exists but rather under what conditions the relationship holds. Put in statistical terms, we are often less interested in main effects than we are in interactions or moderation. An interaction implies that the magnitude of the relation between two variables differs…

Read MoreAlthough a bit old school, listservs such as SEMNET (for latent variable models) and the Multilevel Discussion List remain useful resources when grappling with quantitative modeling issues. You can search the archives to see if your question has come up before or post a new question to obtain fresh feedback / opinions from list members.…

Read More