News and Updates

Categories

2020 Summer Workshops

October 2, 2019

We’re pleased to announce our summer workshop schedule for 2020. The schedule for our regular 5-Day workshops is:

In addition, we are pleased to again offer a steeply reduced cost ($100) 3-day introductory workshop designed specifically for graduate students seeking advanced methodological training:

Given high demand, students are asked to pre-register for this event by March 20, 2020, and will be notified if they have been selected to attend by April 1, 2020.

See our Training page for a general description of our teaching philosophy, links to course reviews and sample course notes.

Read More

How can I estimate statistical power for a structural equation model?

July 6, 2019

This is a question that often arises when using structural equation models in practice, sometimes once a study is completed but more often in the planning phase of a future study. To think about power, we must first consider ways in which we can make errors in hypothesis testing (Cohen, 1992). Briefly, the Type I error rate is the probability of incorrectly rejecting a true null hypothesis; this is the probability that an effect will be found in a sample when there is truly no effect in the population. In contrast, the Type II error rate is the probability of accepting a false null hypothesis; this is the probability that an effect will not be found in a sample when there truly is an effect in the population. Statistical power is one minus the Type II error rate and represents the probability of correctly rejecting a false null hypothesis; this is the probability that an effect will be found in the sample if an effect truly exists in the population. It is important to determine whether a proposed study will have sufficient power to detect an effect if an effect really exists. Although power is quite easy to compute for simple kinds of tests such as a t-test or for a regression parameter, it becomes increasingly complicated to compute power for complex SEMs.

(more…)

Read More

What are modification indices and should I use them when fitting SEMs to my own data?

June 10, 2019

This is a great question and is one that prompts much disagreement among quantitative methodologists. Nearly all confirmatory factor analysis or structural equation models impose some kind of restrictions on the number parameters to be estimated. Usually, some parameters are set to zero (and thus not estimated at all), but sometimes restrictions come in the form of equality constraints or other kinds of structured relations among parameters. The model chi-square test reflects the extent to which these imposed restrictions impede the ability of the model to reproduce the means, variances, and covariances that were observed in the sample. Smaller chi-square values reflect that the estimated model is able to adequately reproduce the observed sample statistics whereas larger values reflect that some aspect of the hypothesized model is inconsistent with characteristics of the observed sample.

(more…)

Read More

Do you have any materials that demonstrate how to estimate structural equation models using lavaan in R?

April 24, 2019

This is a question we often hear, particularly from students and junior researchers who don’t have access to sometimes expensive commercial software for fitting structural equation models. It is possible to estimate a wide array of SEMs, ranging from simple path models to fully latent SEMs to growth curve models and beyond, using the lavaan package within R. For those who may be interested, we have developed detailed demonstrations of how to estimate a broad class of SEMs using lavaan and these are now freely available for download.

(more…)

Read More

How do you choose the best longitudinal data analytic method for testing your research questions?

April 2, 2019

We have worked with statistical models for longitudinal data for more than two decades and this remains a vexing question to us both. There are so many modeling options from which to choose that it is often overwhelming to know which statistical method to use when. This is further complicated by the ongoing refinement of existing models and the development of wholly new models as each year passes. To help orient researchers to these many options, we recently presented a professional development workshop at the 2019 meeting of the Society for Research on Child Development titled Longitudinal Data Analysis: Knowing What to Do and Learning How to Do It and are pleased to make the materials for this workshop publicly available. We hope these materials help researchers identify which longitudinal data analysis techniques are best suited to test various kinds of hypotheses, and to decide among the many different training opportunities that exist for learning how to use these techniques with greater confidence.

(more…)

Read More